SOUTION SHEET #2:

1.(i)(ii) As $[L:K] \neq 1$ there exists $\alpha \in L \setminus K$ and we have the following chain of extensions $K \subseteq K(\alpha) \subseteq L$.

Thus [K(x):K] | [L:K], also $[L:K] = 2 \Rightarrow [K(x):K] = 2$ because $K(x) \neq K$. This also implies that L = K(x).

Now $K(\alpha) \cong K(\alpha) / (m_{K,\alpha})$ where $m_{K,\alpha}$ is the minimal polynomial of α over α .

os $[K(\alpha): K] = 2$ then $\deg m_{K,\alpha} = 2$.

Write $m_{X|K} = x^2 + ax + b$ with a, b \in K. Note that α is a root of $m_{X|K}$ \Rightarrow we have $\alpha^2 + a\alpha + b = 0$ \Longleftrightarrow $\alpha^2 + a\alpha = -b \in K$

If $Char K \neq 2$ we have $(\alpha + \frac{a}{2})^2 = \alpha^2 + a\alpha + \frac{a^2}{4} = \frac{a^2}{4} - b \in K$ $\Rightarrow (\alpha + \frac{a}{2})^2 \in K$ and as $K(\alpha) = K(\alpha + \frac{a}{2}) \text{ we are done.}$

If char K=2 and a=0 then $\alpha^2 \in K$ and we are done. Suppose that $a \neq 0$. Then $\frac{\alpha^2}{a^2} + \frac{a\alpha}{a^2} = \frac{\alpha^2}{a^2} + \frac{\alpha}{a} \in K$ moreover $K(x) = K(\frac{\alpha}{a})$ and we are done.

- 2. If there exists F on intermediate field between K and L

 then [F:K] | [L:K] but [L:K]=p for some p prime

 ⇒ [F:K] = 1 or [F:K]=p, in the former case F=K and

 in the latter case F=L as then [L:F]=1.
- 3. (i) First note that $K(\alpha^2) \in K(\alpha)$ so $K(\alpha^2)$ is an intermediate field extension between K and $K(\alpha)$.

 Now suppose that $K(\alpha^2) \neq K(\alpha)$. Note that α is a root of $\chi^2 \alpha^2 \in K(\alpha^2)[\chi]$ therefore $[K(\alpha): K(\alpha^2)] \in 2$ but it is not equal to $1 \Rightarrow [K(\alpha): K(\alpha^2)] = 2$.

 But then $[K(\alpha): K(\alpha^2)] = K(\alpha): K(\alpha)$ which contradicts that $[K(\alpha): K]$ is $\alpha \in K(\alpha^2) = K(\alpha)$.
 - (ii) Consider the field extension $Q \subseteq Q(UZ)$ clearly $Q(UZ) \neq Q(UZ)$ As an easier example, we can take the extension $Q \subseteq Q(UZ)$ clearly $Q = Q(2) \neq Q(UZ)$.
- Unite $f = \sum_{i=1}^{7} a_i x^i$ where $a_i \in K$. Let $\psi \in Aut(K/L)$ such that $\psi(\beta) \neq \beta$, notice that $\psi(\beta)$ is a root of f indeed, $0 = \psi(0) = \psi(\sum_{i=1}^{7} a_i \beta^i) = \sum_{i=1}^{7} \psi(a_i) \psi(\beta)^i = \sum_{i=1}^{7} a_i \psi(\beta)^i$ let G := Aut(K/L) and observe that as f has finitely many roots thus the orbit $G\beta$ is finite.

let $GB = \{B_1, _, B_k\}$. Consider the polynomial $g = Ti_{i=1}^k (x-B_i)$ observe that the coefficient of x^j in g is given by

 Σ B_{i_1} . _. $B_{i_{k-j}}$. It can be seen that permuting the B_i don't charge these $i_{i_1,-,i_{k-j}} \in \{i_1,-,k\}$ coefficients. In particular the coefficients of g are fixed under the action of G_i . By hypothesis $\forall a \in L \setminus K$ $\exists \phi \in G_i$ such that $\phi(a) \neq a$. This shows that coefficients of g belong to K and $g \in K[X]$.

Finally, notice that $g \mid f$ but f is minimal by hypothesis. Therefore f = g and G acts transitively on the roots of f.

5. We leave it to the reader to verify that up is a homomorphism of fields and show that up fixes K and admits an inverse.

a+bx $\in K \rightleftharpoons b=0$ therefore for a $\in K$ (g(a)=(g(a+0x)=a+0+0x=a).

We claim that $\varphi^2 = id$. Indeed,

 $\varphi(\varphi(a+bx)) = \varphi(a+b+bx) = a+b+b+bx = a+2b+bx = a+bx$

6. It suffices to show that every polynomical in A[X] has a root in A1. Let $f = \sum_{i=1}^{d} a_i x^i \in A([x])$ and B be a root of f.

We can think of f as a polynomial over $Q(a_1, -, a_n)$ then B is contained in $Q(a_1, -, a_n, \beta)$ a finite field extension of $Q(a_1, -, a_n)$. Notice that $Q(a_1, -, a_n) / Q$ is also a finite field extension as each a_i is algebraic. This shows that $Q(a_1, -, a_n, \beta) / Q$ is a finite field extension. As $Q(\beta)$ is an intermediate field between these two fields, $Q(\beta) / Q$ is also finite and β is algebraic $\Rightarrow \beta \in A$.

Suppose that x is transcendental over Klyl. Recall that x is transcendental over $4x \Leftrightarrow 4e(x) \cong Frac 4e[x]$.

Consider the following commutertive diagram:

K(y)(x) = Frac ((Frack[y])[x]) = Frac(K[y][x])

IIS

ILS

K(x)(x)

Frac ((Frack[x])[y]) = Frac (K[x][y])

Frac (K(X)[y])

This shows that $K(x)(y) \cong Frac(K(x)(y))$. Which shows that y is transcendental over K(x).

Changing the roles of x and y yields the other implication.